\qquad Test Date \qquad

Incomplete Dominance, Codominance, and Sex-Linked Pubnett equares.

1. Incomplete Dominance

Some organisms have traits whose alleles show \qquad mixed phenotypes \qquad , which means that neither allele for a particular trait is \qquad over the other. When you complete a Punnett Square for incomplete dominance, you do not use lowercase letters since neither allele is recessive to the other one. Instead, a \qquad is used for one allele, and the same capital letter with an apostrophe or tic mark after it represents the other allele. This is another way of showing incomplete dominance in more advanced genetics.

Example: Snapdragons are plants that show incomplete dominance in their flower color. If snapdragons with red flowers are crossed with snapdragons with white flowers, the phenotype of the offspring is between the two colors. They will have \qquad pink flowers \qquad just like mixing red paint with white paint to get pink paint.

Note: The Tic Mark is written last.

How can you tell if you are looking at a cross that shows incomplete dominance? First, there are three different \qquad . One for each parent and a different one for the offspring. Secondly, the phenotypes of the offspring will be a \qquad of the parent's phenotypes.

Practice-Incomplete Dominance

1. A cross between a homozygous red snapdragon is crossed with a homozygous white snapdragon.
R-Red allele $\quad R^{\prime}$-White allele $\quad R R^{\prime}$-Pink
Genotype in Percent \qquad
Phenotype in Percent \qquad
2. A cross between two heterozygous pink snapdragons.

R-Red allele R'-White allele RR'-Pink

Genotype in Percent: \qquad

Phenotype in Percent: \qquad
3. Draw the correct Punnett square that shows, a cross between a homozygous purple flower and heterozygous lavender flower. What are the chances of having a lavender flower?
P-Purple $\quad P^{\prime}$-White \quad PP'-Lavender
4. A heterozygous rabbit will have medium fur length. What percent of offspring are expected to have medium fur length if the parent rabbits have medium fur (SS^{\prime}) and short fur (SS)?

Genotype	Phenotype
SS	Short Fur
S'S $^{\prime}$	Long Fur
SS $^{\prime}$	Medium Fur

5. A heterozygous plant has pink flowers. What percent of offspring are expected to have pink flowers, if one parent plant is Red and the other parent plant is pink?

Genotype	Phenotype
$R R$	Red
$R^{\prime} R^{\prime}$	White
$R R^{\prime}$	Pink

2. Codominance

In Codominance both alleles are expressed \qquad together or in patches \qquad . Both parental phenotype appear in the offspring together but not mixed. For example, in certain kinds of chickens, black feathers and white feathers have codominant alleles. When you cross a black chicken and a white chicken, you get offspring that are black and white speckled. In a Punnett Square Codominance does not use lowercase letters.

$F^{B-B l a c k}$ Feather Allele
F^{w}-White Feather Allele

Roan color in cattle and horses is another codominance. In cows and horses, there is a fur color called roan. RR produces all red hairs and WW produces all white hairs. RW produces roan fur, which has red and white hairs all mixed together.

Example: A homozygous red cow and a homozygous white cow cross. What are the chances of having a cow that is roan color? C^{R}-Red $\quad \mathrm{C}^{\mathrm{W}}$-White

Practice-Codominance

1. A roan color horse crossed with homozygous white horse. What are the chance of having a roan color offspring? \qquad
2. A speckled chicken is crossed with a white feather chicken. What are the chances of having a white chicken? \qquad

3. Blood Types

Blood typing is important because a person getting a blood transfusion would die if the wrong type of blood

Blood Type	Genotype
A	
B	
AB	
\mathbf{O}	

Practice-Blood Types

1. Which blood type is recessive? \qquad
2. Which blood type is codominant? \qquad
3. The Father is Type O and the Mom is Type \mathbf{O}.

The offspring(s) will be:
\qquad \% 0
\qquad
___ $\%$ B
\qquad \% AB
4. Father is Type A homozygous and the mother is Type B homozygous.

The offspring(s) will be:

\% O
_ $\%$ A
— $\%$ B
_ $\% \mathrm{AB}$
5. If a child has Type $A B$ blood and the mother has Type A blood, could a man with Type O be the father? \qquad Show ALL Work
6. A child with blood type O has a mother with blood type A and father with blood type B. What is the parents blood genotype? \qquad Show ALL Work
7. A woman with type $A B$ blood marries a man with type O blood. What is the blood type of the children? \qquad Show ALL Work

4. X-Linked Traits

Found only on the SEX CHROMOSOME \qquad x \qquad . When a characteristic is Sex-Linked, it occurs most commonly in
\qquad males \qquad .

The traits are_colour blindness, hemophílía, muscular dystrophy.

A. \qquad is when one can't disting Colorblindness affects about 8% of the male population.
B. \qquad the inability to form blood clots.
C. \qquad destroys an individual muscle tissues.

Note: If a male is color blind, has hemophilia, or the muscular dystrophy gene; he has inherited the gene from his \qquad . If a female inherit any of these traits (hemophilia, color-blindness, or muscular dystrophy) they received one recessive gene from mom and one from dad. Example: $X^{b} X^{b}$

Gender	Genotype	Phenotype
Male	$X^{B} Y$	Normal Color Vision
Male	$X^{b} Y$	Color Blind
Female	$X^{B} X^{B}$	Normal Color Vision
Female	$X^{B} X^{b}$	Normal but a Carrier
Female	$X^{b} X^{b}$	Color Blind

Gender	Genotype	Phenotype
Male	$X^{H} Y$	Normal
Male	$X^{h} Y$	Affected Male
Female	$X^{H} X^{H}$	Normal
Female	$X^{H} X^{h}$	Normal but a Carrier
Female	$X^{h} X^{h}$	Hemophilia

Gender	Genotype	Phenotype
Male	$X Y$	Normal
Male	$X^{\prime} Y$	Affected Male
Female	$X X$	Normal
Female	$X X^{\prime}$	Normal but a Carrier
Female	$X^{\prime} X^{\prime}$	Affected Female

Practice-Sex-Linked Traits

1. If a woman who has normal color vision but who carries the recessive allele for color blindness marries a man with normal color vision, what are the chances of having a son(s) that is color blind?
2. In humans, red-green color blindness $\left(X^{b}\right)$ is recessive, and normal color vision $\left(X^{B}\right)$ is dominant. A female with red-green color blindness would have which genotype?
3. Hemophilia, a bleeding disorder, is a human sex-linked trait. A man with hemophilia $\left(X^{h} Y\right)$ marries a woman who carries one gene for the disorder $\left(X^{H} X^{h}\right)$. What are the chances their girls will have hemophilia?
4. Muscular dystrophy is sex-linked disorder that causes muscle weakness and wasting. A female who carries the disorder marries a man who is normal. What percentage of their son(s) will be affected by Muscular dystrophy?
