Chem 12

<u>4.10 Relative Strengths of Weak Acids and Weak Bases</u> Predicting Whether Reactants or Products will be Favoured in a Brönsted-Lowery Equilibrium

Name:

1. Are reactants or products favoured in each of the following? (Find the "acid" on each side, and compare their Ka).

a.	HIO₃	+	NO_2^-	\leftrightarrow	HNO_2	+	IO ₃
b.	HCO ₃ -	+	HS⁻	\leftrightarrow	CO ₃ ²⁻	+	H_2S
c.	NH_4^+	+	OH-	\leftrightarrow	NH_3	+	H_20
d.	H ₂ CO ₃	+	HPO4 ²⁻	\leftrightarrow	$H_2PO_4^-$	+	HCO₃

2. Write the equilibrium reactions which occur for each of the following. Do the resulting equilibria favour reactants or products?

a. $HSO_4^- + NO_2^- \leftrightarrow \rightarrow$

- b. H_3PO_4 + HPO_4^{2-} \leftarrow \rightarrow
- 3. Write the equilibrium reactions, and determine the side favoured for each of the following. **3 Steps :** Unlike #2 above, both reactants are amphiprotic
 - 1. Check table to see which amphiprotic reactant acts as the "acid".
 - 2. Write the products.

3. Identify the acid on each side of the equation and go back to the Ka table to see which acid is stronger.

- a. $HCO_3^- + HSO_3^- \leftarrow \rightarrow$
- b. HSO_3^- + $HC_2O_4^- \leftarrow \rightarrow$
- c. $H_2C_6H_5O_7^-$ + $HCO_3^- \leftarrow \rightarrow$

4. Keq = 14 for the equilibrium $H_2Te + HSe^- \leftarrow \rightarrow HTe^- + H_2Se$

Which acid is stronger: H₂Te or H₂Se? Which base is stronger?

5. Will Keq be greater than or less than 1 for the equilibrium: $HSO_4^- + NH_3 \leftarrow \rightarrow SO_4^{2-} + NH_4^+$

6. Challenge!! Given HOI + $H_2GeO_4^- \leftrightarrow \rightarrow OI^- + H_3GeO_4$ Keq= 8.8 x 10⁻³ HOCI + OBr⁻ $\leftarrow \rightarrow OCI^- + HOBr$ Keq = 14 HOBR + $H_2GeO_4^- \leftarrow \rightarrow OBr^- + H_3GeO_4$ Keq= 7.9 X 10²

Arrange the 4 acids in order from strongest to weakest.