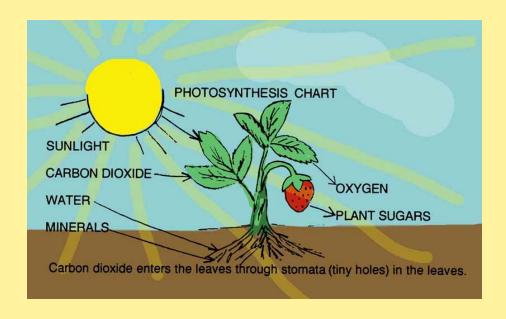


Kingdom Plantae

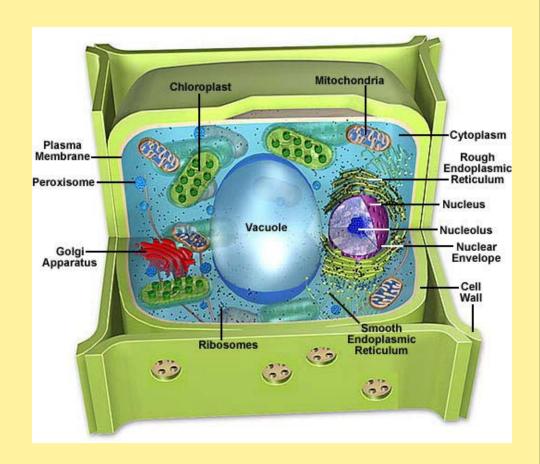
Plant Evolution

Least Evolved


Most Evolved

Characteristics of **Plants**

- Plants are photosynthetic.
- Chloroplasts
 - convert light energy into chemical energy: food/sugar.


$$6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$$

Characteristics of Plants

- Plant cells are eukaryotic – they have a nucleus and membrane-bound organelles.
- Plant cells possess cell walls made of cellulose which provide rigidity and structure to the cell.

Why are plants important?

- Ecology basis of the food chain, plants are produces.... They produce glucose (sugar) and oxygen
- Food plants are an important food source for a variety of organisms
- Shelter for a variety of organisms

Why are plants important?

 Medicine – many medicines are derived from plant material

Fuels

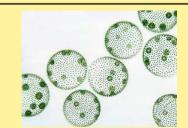
- Fossil fuels coal deposits formed from decaying plants
- Biodiesel plants can be used to make fuel (Surrey Biofuel does this)
- Esthetics many cosmetics are derived from plant material and plants make great decorations!

What Do Plants Need to Survive?

- Sunlight energy source for the photosynthesis reaction
- Water a reactant in the photosynthesis reaction
- Minerals to facilitate growth
- Gas exchange to bring in CO₂ for photosynthesis and remove O₂
- Transport of Water and Nutrients around the plant to nourish cells not directly in contact with water

Plants in water

- Life is a bit easier for aquatic plants because:
 - The plant is supported by the buoyancy of water
 - Every cell has easy access to water and nourishment through diffusion
 - Reproduction can occur via the release of sperm and eggs into water



Algae: 2 Classifications

Plant-like protists

- Blue-green algae
- Unicellular algae
- Kingdome Protista

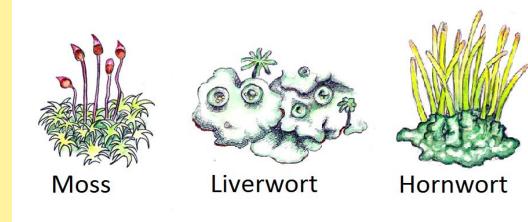
Sea Weed or Kelp

- Sometimes classified as Kingom Plantae
- Non-Vascular Plant when studied in Kindom Plantae
- Other classifications are often used

Non-Vascular Plants

- Lack internal transport system
 - No 'piping'
 - Cannot transport water or food around the plant
- Due to lack of water transport non-vascular plants are
 - Small
 - Grow low to ground (not tall)
 - Grow in moist or wet areas
- Mosses (land) and Algae (water)

Phylum: Bryophyta


- Bryophytes
- Non-Vascular
- Land Plants

Mosses

Liverworts

Hornworts

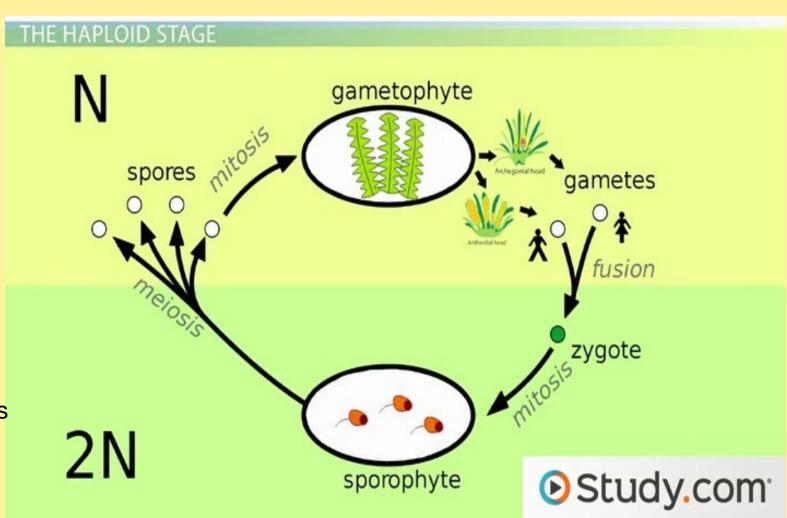
Phylum: Bryophyta

Asexual Reproduction

- Spores
 - Haploid (n), one set of chromos
 - Don't need to meet up with another to reproduce

Sexual Reproduction

- Gametes (n)
 - Sperm must swim to egg,
 - moist environment only
 - Fertilize to form zygote (Diploid, 2n)


Moss Life Cycle

Haploid = Asexual

spores

Diploid = Sexual

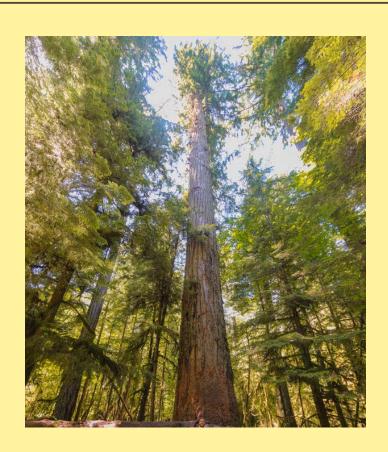
- gametes
- zygote

Demands of Living in a Terrestrial Environment

- Limited supply of water
- Require support to remain upright
- Movement of nutrients and water from one part of the plant to the other
 - Sugars are made in the leaves and nutrients are absorbed by the roots

- Water loss during gas exchange
- Reproduction with little or no water

Advantages to terrestrial living


Given the challenges, why would plants have evolved to live in terrestrial environments?

- Greater quantity of light
- Initially no predators
- Readily available minerals in soil
- Greater concentration of CO₂ in air than in water

Vascualar Plants

- Have "piping" system
- Transports water and food around the plant
- Grow taller
 - Can move water from roots to top of plant.
 - Can move food from leaves to roots

Phylum Tracheophyta

- Vascular Plants
- Tracheophytes require moist environments
 - sperm must swim to egg
- Ferns
- Fiddleheads
 - Immature ferns

Horsetails

Phylum Tracheophyta

- Asexual Reproduction
 - Spores

- Sexual Reproduction
 - Sperm must swim to egg

Spores vs. Seeds

- Moss and Ferns can reproduce asexually by spores
- Higher Plants reproduce with SEEDS
 - Sexual reproduction
 - -seeds result after egg and sperm unite
- Two Major Types of Seed Producing Plants
 - Gymnosperms
 - Angiosperms

Gymnosperms

Evolved before the dinosaurs

Conifers

Gingkoes

Cycads

Look like fern or palm, but has cones

Gymnosperms

- "Naked Seeds"
 - Seed not enclosed in a fruit
 - Have CONES

Male Cones

-produce pollen

Female Cones

-produce ovule

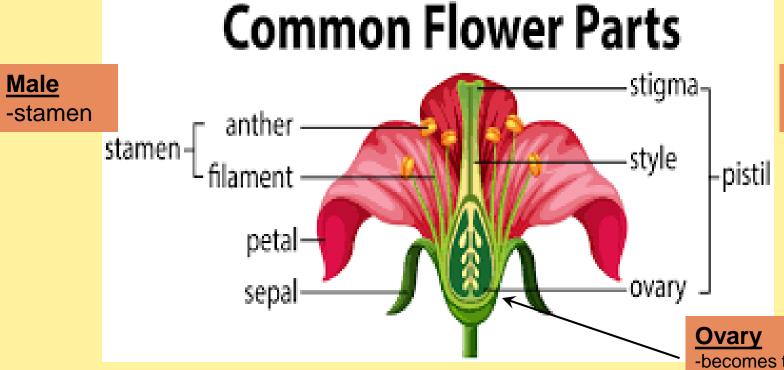
Before fertilization

Open to release seeds

Angiosperms

- Flowering Plants
- Flower is the reproductive part

 Seeds enclosed in a "vessel" or fruit



Angiosperms

- Parts of a Flower
 - Find a typical flower in your garden and see if you can identify the parts

Female

-pistil

-becomes the "Fruit"-seeds form inside

Angiosperm Diversity

- Angiosperms are more successful than Gymnosperms because:
 - Co-evolution with insects
 - Colourful flowers attract insects
 - Seeds are protected by fruit
 - Animals eat fruit and spread and disperse seeds in their "poop"

Waxy cuticle to protect leaves from water loss

Stomata – pores on the underside of the leaves regulate gas exchange to limit water loss

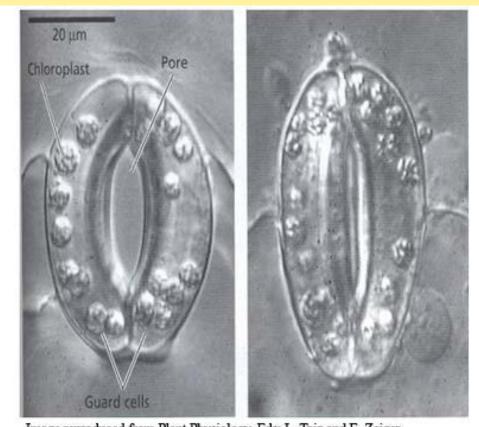
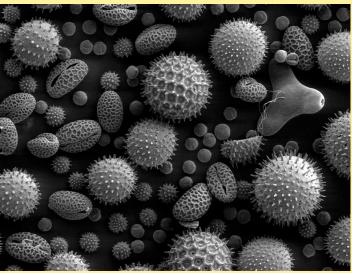
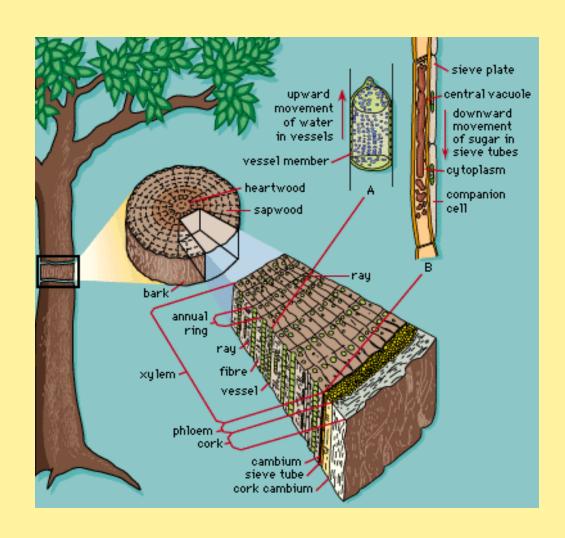



Image reproduced from Plant Physiology, Eds: L. Taiz and E. Zeiger, 2nd edition, Sinauer Associates, Inc. Publisher, Sunderland MA, USA. p. 523


 Development of seeds and pollen grains to prevent reproductive cells from drying out

- Vascular tissue to transport nutrients and water throughout the plant
 - Xylem: moves
 water and nutrients
 up from the roots
 - Phloem: moves sugars from the leaves to the rest of the plant

