Genetics Practice Multiple Choice

Name: \qquad

1. Which of the following describes phenotype?

I	TT
II	brown eyes
III	the genes for a particular trait
IV	the physical appearance of an organism

A. I and II only
B. I and IV only
C. II and III only
D. II and IV only
2.

A homozygous, long-tailed cat is mated with a homozygous, short-tailed cat. If long tails are the dominant trait, which of the following would be expected in the offspring?
A. all long-tailed
B. all short-tailed
C. 50% long-tailed; 50% short-tailed
D. 75% long-tailed; 25% short-tailed
3. If two cats heterozygous for long tails (Ll) are mated, what would be the expected percentages of phenotypesin their offspring?
A. 100% long tails
B. 75% long tails, 25% short tails
C. 50% long tails, 50% short tails
D. 25% long tails, 75% short tails.

4.	P Q R S T U V W Which of the following represent the position of the gametes? A. P, Q, S, T B. P, Q, R, U C. R, S, U, V D. $\mathrm{S}, \mathrm{T}, \mathrm{V}, \mathrm{W}$
5.	A purebred male brown hamster was mated with a purebred female golden hamster. All the offspring were brown. Which of the following describes the genotype of the offspring? A. heterozygous B. homozygous recessive C. homozygous dominant D. heterozygous dominant and homozygous recessive
6.	Which of the following crosses would result in only homozygous offspring? A. $p p \times p p$ B. $\mathrm{Pp} \times \mathrm{pp}$ C. $P p \times P p$ D. $P P \times p p$

If two heterozygous merle dogs are crossed, what is the probability of the offspring being white and having serious eye disorders?
A. 0%
B. 25%
C. 50%
D. 75%

9.	What will produce a white flower with a red trim when a white flower is crossed with a red flower? A. mutation B. dominance C. codominance D. incomplete dominance
10.	Blue-haired blips are crossed with yellow-haired blips. All of the offspring have green hair. Hair color in blips is an example of what? a. codominance c. recessive alleles b. incomplete dominance d. complete dominance
11.	In codominance, heterozygous individuals have both phenotypes. A. True B. False
12.	The father is Type O and the mother is type AB . Which statement is true about the probablilites of blood type in their offspring? A. $100 \% \mathrm{AB}$ B. $50 \% \mathrm{~A}$ and $50 \% \mathrm{~B}$ C. $25 \% \mathrm{~A}$ D. $50 \% \mathrm{AB}$ and $50 \% \mathrm{~A}$
13.	A woman with heterozygous Type A blood ($\mathrm{I}^{\mathrm{A}} \mathrm{i}$) marries a man with homozygous Type B blood ($\left.\mathrm{I}^{\mathrm{B}} \mathrm{I}^{\mathrm{B}}\right)$. What are the chances of having a child that is blood type B ? A. 0% B. 25% C. 50% D. 100%
14.	How is the sex of a human offspring determined? A. The egg from the mother contains two Y chromosomes. B. The sperm from the father contains two Y chromosomes. C. The egg from the mother contains an X or a Y chromosome. D. The sperm from the father contains an X or a Y chromosome.

15.	Why is colour blindness a sex-linked trait? A. Only males can have colour blindness. B. Only females can have colour blindness. C. The allele causing colour blindness is on a Y chromosome. D. The allele causing colour blindness is on an X chromosome.
16.	A woman who is heterozygous for colour blindness and a man with colour blindness are considering having children. What is the probability of having a child who is both male and colour-blind? A. 100% B. 75% C. 25% D. 0%
17.	P Q R S T U V W What lettered spaces in the Punnett square would show the probable genotypes of this cross? A. R, S, V, W B. P, Q, R, U C. $\mathrm{S}, \mathrm{T}, \mathrm{V}, \mathrm{W}$ D. P, Q, S, T
18.	Match each Description on the left with the correct Term on the right. Each Term may be used as often as necessary. Record your answers on the Answer Sheet.

19.	I $\mathrm{Hh} \times \mathrm{Hh}$ II $\mathrm{Hh} \times \mathrm{hh}$ III $\mathrm{HH} \times \mathrm{Hh}$ IV $\mathrm{HH} \times \mathrm{hh}$$\begin{aligned} \mathrm{H} & =\text { hairy toes } \\ \mathrm{h} & =\text { smooth toes } \end{aligned}$ The hairy toe allele is dominant and the smooth toe allele is recessive. Which of the following crosses have equal chances of producing heterozygous hairy toed individuals? A. I, II and III only B. I, II and IV only C. I, III and IV only D. I, II, III and IV
20.	The following coat colors are known to be determined by alleles at one locus in horses: Palomino = golden coat; Cremello = almost white; Chestnut = brown. The following table gives the ratios obtained in matings of the above varieties: Cremello x cremello - all cremello Chestnut x chestnut - all chestnut Cremello x chestnut - all palomino Palomino x palomino $-1 / 4$ chestnut, $1 / 2$ palomino, $1 / 4$ cremello Based on these data, what are the genotypes of each type of horse? A. $A A=$ Chestnut; $A a=$ Cremello; $a=$ Palomino B. $A A=$ Cremello; $A a=$ Chestnut; $a=$ Palomino C. $A A=$ Palomino; $A a=$ Cremello; $a=$ Chestnut D. $\mathrm{AA}=$ Palomino; $\mathrm{A}=$ Chestnut; $a \mathrm{a}=$ Cremello E. $A A=$ Chestnut; $A a=$ Palomino; $a=$ Cremello

21.

In pea plants, when seeds are formed, the regular allele, R , is dominant over the wrinkled allele, r .

Regular Seed Appearance

Wrinkled Seed
 Appearance

Which of the following diagrams shows the results of a cross between a heterozygous regular seed plant and a homozygous wrinkled seed plant?
A.

B.

C.

D.

