Mendel and His Garden Peas
In the 1800's a monk named Gregor Mendel, "crossed" a pure breeding Tall pea plant with a pure breeding short pea plant. The resulting Fr generation were all Tall.

Mendel concluded Tall was dominant and short was recessive. The F_{1} generation were hybrids.
crossed: breed together
pure breeding: contain only those genes; same as parent
F_{1} : offspring (1^{4} generation)
Dominant: gene that shows
Recessive: masked /hidden by Dominint only shows if given recessive gene by BoTH parents
Hybrid: mix of 2
Tall \& Short are called phenotypes. A phenotype is
eg) blue eyes, brown eyes, Pink, white flowers,
Pure breeding tall plants are
"Short " are
Hybrids are
T and t are
Td t are on the chromosome passed on from the parents

Pure breeding: $T T$ and $t t$ are called ...
hybrids : TE are called...

Monotlybrid cross

How does Genetics show a "cross"? Tall x short

Punnet
square

Fl generation: phenotype? gino type?

Next Mendel "crossed" 2 of the Fig generation
What were the results? What w
punnet
square
F_{2} generation: phenotype? gino type?

2 Important ratio's.
3:1 phenotypes
1:2:1 genotype

Practice Genetics Problems We will solve these together.

1. In cats, long tails are dominant over short tails. A pure-bred (homozygous) long-tailed cat, is crossed with a short tailed cat.
a. What are the parent genotypes?
b. What are the genotypes and phenotypes of the F1 (first filial= kids) generation?
c. Draw a punnett square to show the F2 (second filial = grandkids) offspring, when 2 of the F1 generation are bred together.
2. In humans, the allele for brown eyes is dominant over blue. A man with blue eyes has a child, with a woman who is heterozygous fro brown eyes. What is the \% chance the child will have blue eyes?
3. A man and a woman who are both heterozygous for brown eyes have a child. What is the \% chance the child will have brown eyes?
4. A couple who are both blue-eyed have a child. What is the $\%$ chance the child will have brown eyes?
